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The flow of a laminar wall plume in a constant transverse magnetic field is considered. The results are
obtained with the numerical solution of the governing equations and cover both small and large n values
and Prandtl numbers from 0.01 to 100. The similar wall plume has been investigated in the past but the
nonsimilar has not been treated until now and it is solved here for the first time.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wall plume is the flow produced by a line thermal source situ-
ated at the leading edge of a vertical adiabatic plate. Magnetohy-
drodynamics (MHD) is the field of fluid mechanics that
encompasses the phenomena arising when a magnetic field is ap-
plied to an electrically conducting fluid. Water, air at high temper-
atures, plasma and especially liquid metals (lithium, mercury,
sodium) are electrically conducting fluids. Static magnetic fields
are known to be suitable for damping mean flow and turbulent
motion in an electrically conducting liquid and for that reason they
are used in damping of liquid-metal jets and plumes formed in
industry [3,15]. For example, in the continuous casting of large
steel slabs a magnetic field is used to suppress motion within the
mould. Sometimes the motion takes the form of a submerged jet
which feeds the mould from above [4]. Another field where plumes
are formed is thermonuclear fusion (see for example [7,9,12].
There magnetic forces are used to confine the hot plasma away
from the reactor walls.

The similar solution of the classical wall plume without magnetic
field obtained by Liburdy and Faeth [8] and Jaluria and Gebhart [6] is
now well known. Gray [5] investigated the wall plume in a trans-
verse magnetic field and found that similarity solution exists only
when the strength of the magnetic fields changes along the plate
with the relation B � x�2/5. When the magnetic field is constant the
problem does not accept a similarity solution and has not been
solved until now. The scope of the present note is to present the non-
similar solution of the wall plume in a constant transverse magnetic
field. The problem resembles with the nonsimilar flow along a verti-
cal, isothermal plate in a constant transverse magnetic field, treated
by Sparrow and Cess [13]. Although the present theory is too ideal-
ll rights reserved.
ized for direct application in the cases mentioned in the previous
paragraph, it can be expected that the qualitative insights will be
useful.

2. The mathematical model

Consider the plane plume flow along a vertical adiabatic plate
with u and v denoting respectively the velocity components in
the x and y direction, where x is the coordinate along the plate
and y is the coordinate perpendicular to x. For steady, two-dimen-
sional flow the boundary layer equations with constant fluid prop-
erties are

continuity equation :
@u
@x
þ @v
@y
¼ 0 ð1Þ

Momentum equation : u
@u
@x
þv @u

@y
¼ m

@2u
@y2 þ gbðT�T1Þ�

rB2

q
u

ð2Þ

Energy equation : u
@T
@x
þv @T

@y
¼ a

@2T
@y2 ð3Þ

where m is the fluid kinematic viscosity, g is the gravity acceleration,
T is the fluid temperature, b is the fluid expansion coefficient, r is
the electrical conductivity, q is the density, B is the strength of
the magnetic field and a is the fluid thermal diffusivity. The bound-
ary conditions are:

At y ¼ 0 : u ¼ 0; v ¼ 0; @T=@y ¼ 0 ð4Þ
As y!1 u ¼ 0; T ¼ T1 ð5Þ

The Eqs. (1)–(3) represent a two-dimensional parabolic prob-
lem. Such a flow has a predominant velocity in the stream wise
coordinate which in our case is the direction along the plate. We
solved these equations directly using the finite difference meth-
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od of Patankar [11]. The solution procedure starts with a known
distribution of velocity and temperature at the plume exit (x = 0)
and marches along the plate. At each downstream position the
discretized Eqs. (2) and (3) are solved using the tridiagonal ma-
trix algorithm (TDMA). Subsequently the cross-stream velocities
v were obtained from the continuity equation. The forward step
size Dx increases in proportion to the width of the calculation
domain and was 1% of the outer boundary. In order to obtain
a complete form of both the temperature and velocity profile
at the same cross section we used a nonuniform lateral grid.
Dy takes small values near the surface (many grid points near
the surface) and increases along y. The lateral grid cells were
300. It is known that the boundary layer thickness changes along
x. For that reason the calculation domain must always be at least
equal or wider than the boundary layer thickness. In each case
we tried to have a calculation domain wider than the real
boundary layer thickness. This has been done by trial and error.
If the calculation domain was thin the velocity and temperature
profiles were truncated. In this case we used another wider cal-
culation domain in order to capture the entire velocity and tem-
perature profiles. The parabolic (space marching) solution
procedure is described analytically in the textbook of Patankar
[11] which ‘‘remains to this day a model of simplicity and clarity
and one of the most coherent explications of the finite volume
technique ever written” [1]. This solution method has been used
extensively in the literature, and has been included in fluid
mechanics and heat transfer textbooks (see page 364 in [2], page
271 in [14] and page 124 in [10].

3. Results and discussion

Liburdy and Faeth [8] solved the wall plume problem using the
following quantities. The transformed transverse coordinate is

g ¼ y
x

Gr1=5 ð6Þ
Table 1
Maximum velocity f’max and wall temperature h(0) for different Pr numbers and different

n Pr = 0.01 Pr = 0.1 Pr = 1

f’max h(0) f’max h(0) f’max

0.0 0.6083
Liburdy&
Faeth

0.1258
Liburdy&
Faeth

0.7352
Liburdy&
Faeth

0.3165
Liburdy&
Faeth

0.7341
Liburdy&
Faeth

0.0 0.5969 0.1302 0.7162 0.3282 0.7265
1.0 0.1878 0.1747 0.3909 0.4067 0.5201
2.0 0.1088 0.2182 0.2307 0.4762 0.3953
3.0 0.0820 0.2475 0.1718 0.5318 0.3204
4.0 0.1429 0.5877 0.2730
5.0 0.1242 0.6374 0.2390
6.0 0.1073 0.6594 0.2146
7.0 0.0973 0.6981 0.1920
8.0 0.0894 0.7300 0.1768
9.0 0.0828 0.7559 0.1643
10 0.0771 0.7838 0.1537
15 0.1218
20 0.1016
25 0.0878
30 0.0778
40
50
60
70
80
90
100
110
120
130
140
150
The nondimensional velocity f’ and nondimensional temperature h
are

f 0 ¼ ux
m

Gr�2=5 ð7Þ

h ¼ kðT � T1ÞQ�1Gr1=5Pr ð8Þ

where Gr is the Grashof number

Gr ¼ gbQx3=ðkm2PrÞ ð9Þ

Q is the heat flux

Q ¼ qcp

Z 1

0
uðT � T1Þdy ð10Þ

Pr is the Prandtl number

Pr ¼ m=a ð11Þ

and k and cp are the fluid thermal conductivity and the specific
heat. It should be mentioned here that the present problem does
not accept a similarity solution and therefore the flow character-
istics change in the streamwise direction. We found that the
quantity n

n ¼ rB2

q
qcpx2

gbQ

� �2=5

m1=5 ð12Þ

is the suitable parameter which expresses the relative importance
of the magnetic forces to buoyancy forces. When n = 0 we have
the classical wall plume without magnetic field. The above param-
eter n is equivalent to parameter n used by Sparrow and Cess [13]
for the flow along a vertical isothermal plate.

In Table 1 the maximum velocity f’max and the wall temperature
h(0) for different Pr numbers and different values of n parameter
are shown. In the same table the corresponding results by Liburdy
and Faeth [8] for n = 0 are included. The comparison between our
results and those of Liburdy and Faeth [8] is satisfactory. The differ-
ences are below 3%.
values of n parameter.

Pr = 10 Pr = 100

H(0) f’max h(0) f’max h(0)
0.8340
Liburdy&
Faeth

0.6380
Liburdy&
Faeth

2.6065
Liburdy&
Faeth

0.4841
Liburdy&
Faeth

9.5698
Liburdy&
Faeth

0.8546 0.6455 2.6368 0.4748 9.4577
0.9853 0.5162 2.8864 0.4353 9.8164
1.0852 0.4515 3.0647 0.4065 9.9756
1.1826 0.4103 3.1734 0.3835 10.1023
1.2724 0.3774 3.2660 0.3667 10.2122
1.3486 0.3496 3.3598 0.3530 10.3628
1.4214 0.3272 3.4453 0.3417 10.5041
1.4607 0.3079 3.5310 0.3316 10.5778
1.5234 0.2911 3.6177 0.3228 10.6505
1.5798 0.2766 3.6977 0.3150 10.7512
1.6360 0.2636 3.7774 0.3077 10.8504
1.9268 0.2177 4.1866 0.2746 11.2102
2.0972 0.1873 4.5073 0.2542 11.6012
2.2446 0.1655 4.8034 0.2380 12.1004
2.3860 0.1493 5.0577 0.2244 12.4113

0.1261 5.5257 0.2024 13.0456
0.1103 5.9409 0.1852 13.8294
0.0987 6.3062 0.1715 14.5218
0.0897 6.6230 0.1601 15.1522

0.1504 15.7403
0.1421 16.2879
0.1348 16.7881
0.1284 17.2568
0.1226 17.7072
0.1175 18.1284
0.1128 18.5385
0.1085 18.9170
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Fig. 1. Velocity profiles for different values of n parameter and Pr = 1.
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In Figs. 1 and 2 we present velocity and temperature profiles for
Pr = 1 and different values of n parameter while in Figs. 3 and 4
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Fig. 2. Temperature profiles for differen
velocity and temperature profiles are shown for n = 2 and different
Pr numbers. It is seen that both velocity and temperature profiles
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t values of n parameter and Pr = 1.
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Fig. 3. Velocity profiles for n = 2 and different Pr numbers.
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become thicker as n increases, whereas velocity decreases and
temperature increases with increasing n. The influence of Pr num-
ber on the results is the usual in boundary layer theory, that is, as
10 0

0

1

2

3

ξ=2

Pr=10

Pr=0.1

Pr=1

ϑ

Fig. 4. Temperature profiles for n
Pr number increases both velocity and temperature profiles be-
come thinner. From the above table and figures we see that as n in-
creases the magnetic field retards the flow and the flow tends to
20 30
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η

= 2 and different Pr numbers.
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Fig. 5. Variation of dimensionless maximum velocity with n for different Prandtl numbers.
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disappear as n increases. The results in the above table stop at
approximately n = 0.1 where the plume velocity reaches a very
small value. It is seen that the velocity decreases much faster as
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Fig. 6. Variation of dimensionless maximum temp
Pr number decreases. The maximum velocity takes the value 0.1
at n = 2 for Pr = 0.01 while reaches the value 0.1 at n = 150 for
Pr = 100.
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erature with n for different Prandtl numbers.
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In Figs. 5 and 6 the nondimensional maximum velocity and
nondimensional maximum temperature are shown as functions
of the nondimensional n parameter. The best fit line for maximum
velocity is power-law according to following relations

lnðf 0maxÞ ¼ �0:7579 lnðnÞ � 1:6779 for Pr ¼ 0:01 ð13Þ
lnðf 0maxÞ ¼ �0:6989 lnðnÞ � 0:9674 for Pr ¼ 0:1 ð14Þ
lnðf 0maxÞ ¼ �0:5774 lnðnÞ � 0:5422 for Pr ¼ 1 ð15Þ
lnðf 0maxÞ ¼ �0:4402 lnðnÞ � 0:4072 for Pr ¼ 10 ð16Þ
lnðf 0maxÞ ¼ �0:3008 lnðnÞ � 0:5760 for Pr ¼ 100 ð17Þ

The corresponding relations for maximum temperature are

lnðhð0ÞÞ ¼ 0:3175 lnðnÞ � 1:7441 for Pr ¼ 0:01 ð18Þ
lnðhð0ÞÞ ¼ 0:2913 lnðnÞ � 0:9269 for Pr ¼ 0:1 ð19Þ
lnðhð0ÞÞ ¼ 0:2744 lnðnÞ � 0:1126 for Pr ¼ 1 ð20Þ
lnðhð0ÞÞ ¼ 0:2098 lnðnÞ þ 0:9114 for Pr ¼ 10 ð21Þ

We see that for low n values both f 0max and h(0) follow the
power-law but as n increases these quantities tend to become lin-
ear and for that reason no best fit line can be used for h(0) at
Pr = 100.

4. Conclusions

In the present note the wall plume in a constant transverse
magnetic field has been investigated numerically for the first time.
The problem is nonsimilar and it is governed by a new parameter

n ¼ rB2

q
qcpx2

gbQ

� �2=5
m1=5 which expresses the relative importance of the

magnetic forces to buoyancy forces. As n increases the magnetic
field retards the flow and the nondimensional maximum velocity
decreases whereas the nondimensional maximum temperature in-
creases. The variation of the nondimensional maximum velocity
and the nondimensional maximum temperature with n follows
approximately a power-law relation. The nondimensional maxi-
mum velocity and temperature increase with increasing Prandtl
number. Both velocity and temperature profiles become thicker
as n increases and as Prandtl number increases both velocity and
temperature profiles become thinner.
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